MeanSquaredLogarithmicErrorΒΆ
Computes the mean squared logarithmic error between y_true & y_pred.
Abstract Signature:
MeanSquaredLogarithmicError(y_true: Tensor, y_pred: Tensor)
PyTorch
API:
βStrategy: Macro 'torch.nn.functional.mse_loss(torch.log1p({y_true}), torch.log1p({y_pred}), reduction='none')'
JAX (Core)
API:
βStrategy: Macro 'optax.squared_error(jax.numpy.log1p({y_true}), jax.numpy.log1p({y_pred}))'
TensorFlow
API:
tf.keras.losses.mean_squared_logarithmic_errorStrategy: Direct Mapping
Flax NNX
API:
βStrategy: Macro 'optax.squared_error(jax.numpy.log1p({y_true}), jax.numpy.log1p({y_pred}))'
PaxML / Praxis
API:
βStrategy: Macro 'optax.squared_error(jax.numpy.log1p({y_true}), jax.numpy.log1p({y_pred}))'