KLDivergenceΒΆ

Computes Kullback-Leibler divergence loss between y_true & y_pred.

Abstract Signature:

KLDivergence(y_true: Tensor, y_pred: Tensor)

PyTorch

API: torch.nn.functional.kl_div
Strategy: Macro 'torch.nn.functional.kl_div(({y_pred}).log(), {y_true}, reduction='none').sum(dim=-1)'

JAX (Core)

API: optax.kl_divergence
Strategy: Macro 'optax.kl_divergence(optax.log_softmax({y_pred}), {y_true})'

Keras

API: keras.losses.kl_divergence
Strategy: Direct Mapping

TensorFlow

API: tf.keras.losses.kl_divergence
Strategy: Direct Mapping

Apple MLX

API: mlx.nn.losses.kl_div_loss
Strategy: Direct Mapping

Flax NNX

API: optax.kl_divergence
Strategy: Direct Mapping

PaxML / Praxis

API: optax.kl_divergence
Strategy: Direct Mapping