HardSigmoid =========== HardSigmoid takes one input data (Tensor) and produces one output data (Tensor) where the HardSigmoid function, y = max(0, min(1, alpha * x + beta)), is applied to the tensor elementwise. **Abstract Signature:** ``HardSigmoid(X: Tensor, alpha: float, beta: float)`` .. raw:: html

PyTorch

API: torch.nn.modules.activation.Hardsigmoid
Strategy: Direct Mapping

Keras

API: keras.src.ops.nn.HardSigmoid
Strategy: Direct Mapping