ml_switcheroo.testing.fuzzer.core ================================= .. py:module:: ml_switcheroo.testing.fuzzer.core .. autoapi-nested-parse:: Core Engine of the Input Fuzzer (Hypothesis Integration). This module provides the `InputFuzzer` facade which now delegates generation logic to Hypothesis Strategies. It maintains backward compatibility for casual usage via `generate_inputs`. Classes ------- .. autoapisummary:: ml_switcheroo.testing.fuzzer.core.InputFuzzer Module Contents --------------- .. py:class:: InputFuzzer Facade for creating Hypothesis strategies based on Semantic Spec. .. py:method:: build_strategies(params: List[str], hints: Optional[Dict[str, str]] = None, constraints: Optional[Dict[str, Dict]] = None) -> Dict[str, hypothesis.strategies.SearchStrategy] Constructs a dictionary of Hypothesis strategies for the given parameters. Automatically handles shared symbolic dimensions (e.g. Array['N']). :param params: List of argument names. :param hints: Mapping of name -> type string. :param constraints: Mapping of name -> dict constraints (min, max, etc). :returns: Strategies ready to be fed into @given. :rtype: Dict[str, Strategy] .. py:method:: adapt_to_framework(kwargs: Dict[str, Any], framework: str) -> Dict[str, Any] Delegates to Framework Adapter to convert Numpy/Native inputs to Tensors. :param kwargs: Dictionary of input values. :param framework: Target framework key (e.g. 'torch'). :returns: Dict with converted values.